Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Chloro- N-(2,5-dichlorophenyl)acetamide

B. Thimme Gowda, ${ }^{\text {a }}$ Sabine Foro, ${ }^{\text {b }}$ Hiromitsu Terao ${ }^{\text {c }}$ and Hartmut Fuess ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and ${ }^{\text {c }}$ Faculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
Correspondence e-mail: gowdabt@yahoo.com

Received 15 May 2009; accepted 25 May 2009
Key indicators: single-crystal X-ray study; $T=299 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$;
R factor $=0.040 ; w R$ factor $=0.098$; data-to-parameter ratio $=15.7$.

The conformation of the $\mathrm{N}-\mathrm{H}$ bond in the structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{3} \mathrm{NO}$, is anti to the $\mathrm{C}=\mathrm{O}$ bond. The $\mathrm{N}-\mathrm{H} \quad \mathrm{H}$ atom shows close intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds with both the ring Cl atom in the ortho position and the side-chain Cl atom. The molecules crystallize in planes parallel to (221).

Related literature

For the preparation, see: Shilpa \& Gowda (2007); Pies et al. (1971). For our work on the effect of ring and side-chain substitutions on the solid-state geometries of aromatic amides, see: Gowda Foro \& Fuess (2008); Gowda, Kožíšek et al. (2008); Gowda et al. (2009).

Experimental

$$
\begin{aligned}
& \text { Crystal data } \\
& \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{3} \mathrm{NO}
\end{aligned} \quad M_{r}=238.49
$$

Triclinic, $P \overline{1}$
$a=7.492$ (2) \AA
$b=8.496(2) \AA$
$c=8.988$ (2) \AA
$\alpha=69.68(2)^{\circ}$
$\beta=67.54$ (2) ${ }^{\circ}$
$\gamma=66.67(2)^{\circ}$

$$
V=472.4(2) \AA^{3}
$$

$Z=2$
Mo $K \alpha$ radiation
$\mu=0.92 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
$0.38 \times 0.28 \times 0.22 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford
\quad Diffraction, 2007)
$\quad T_{\min }=0.720, T_{\max }=0.823$
2735 measured reflections
1914 independent reflections
1359 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.098$
$S=1.02$
1914 reflections
122 parameters

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.28 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{Cl} 3$	$0.82(3)$	$2.43(3)$	$2.922(2)$	$120(2)$
$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{Cl} 1$	$0.82(3)$	$2.45(3)$	$2.933(2)$	$119(2)$

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany for an extension of his research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2962).

References

Gowda, B. T., Foro, S. \& Fuess, H. (2008). Acta Cryst. E64, 0419.
Gowda, B. T., Foro, S., Terao, H. \& Fuess, H. (2009). Acta Cryst. E65, o949.
Gowda, B. T., Kožíšek, J., Tokarčík, M. \& Fuess, H. (2008). Acta Cryst. E64, o987.
Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.
Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.
Pies, W., Rager, H. \& Weiss, A. (1971). Org. Magn. Reson. 3, 147-176. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shilpa \& Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84-90. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2009). E65, o1445 [doi:10.1107/S1600536809019898]

2-Chloro- N-(2,5-dichlorophenyl)acetamide

B. T. Gowda, S. Foro, H. Terao and H. Fuess

Comment

As part of a study of the effect of ring and side chain substitutions on the solid state geometries of aromatic amides (Gowda Foro \& Fuess, 2008; Gowda, Kožíšek et al., 2008; Gowda et al., 2009), in the present work, the structure of 2-chloro- N-(2,5dichlorophenyl)acetamide (25DCPCA)(I) has been determined. The conformation of the $\mathrm{N}-\mathrm{H}$ bond in the structure (Fig. 1) is syn to the ortho-chloro and anti to the meta-chloro substituents in the aromatic ring, in contrast to the syn conformation observed with respect to both the 2-chloro and 3-chloro groups in 2-chloro- N-(2,3-dichlorophenyl)acetamide (Gowda, Kožíšek et al., 2008). Furthermore, the conformation of the $\mathrm{C}=\mathrm{O}$ bond is anti to both the $\mathrm{N}-\mathrm{H}$ bond and side chain Cl atom, compared to the anti conformation of the $\mathrm{C}=\mathrm{O}$ bond with respect to the $\mathrm{N}-\mathrm{H}$ bond and syn with respect to the side chain Cl atom, observed in 2-chloro- N-(2,3-dichlorophenyl)-acetamide (Gowda Foro \& Fuess, 2008). But the conformations of the $\mathrm{N}-\mathrm{H}$ bond and the side chain $\mathrm{C}-\mathrm{H}$ bonds are anti to each other, while those of the ring $\mathrm{C}-\mathrm{Cl}$ and the side chain $\mathrm{C}-\mathrm{Cl}$ bonds are syn to each other. Further, the $\mathrm{N}-\mathrm{H} \mathrm{H}$-atom shows simultaneous intramolecular hydrogen bonding with both the ring and side chain Cl atoms. The crystal packing is shown in Fig. 2 (Table 1).

Experimental

The title compound was prepared according to the literature method (Shilpa \& Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared, NMR and NQR spectra (Shilpa \& Gowda, 2007; Pies et al., 1971). Single crystals of the title compound used for X-ray diffraction studies were grown by a slow evaporation of its ethanolic solution at room temperature.

Refinement

The N -bound H atom was located in difference map and its positional parameters were refined freely. The other H atoms were positioned with idealized geometry using a riding model $[\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$]. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the $U_{\text {eq }}$ of the parent atom.

Figures

Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.

supplementary materials

Fig. 2. Crystal packing of the title compound with hydrogen bonding shown as dashed lines.

2-Chloro- N -(2,5-dichlorophenyl)acetamide

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{3} \mathrm{NO}$
$M_{r}=238.49$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.492(2) \AA$
$b=8.496(2) \AA$
$c=8.988(2) \AA$
$\alpha=69.68(2)^{\circ}$
$\beta=67.54$ (2 $^{\circ}$
$\gamma=66.67(2)^{\circ}$
$V=472.4(2) \AA^{3}$
$Z=2$
$F_{000}=240$
$D_{\mathrm{x}}=1.677 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 698 reflections
$\theta=3.2-27.9^{\circ}$
$\mu=0.92 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
Prism, colourless
$0.38 \times 0.28 \times 0.22 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=299 \mathrm{~K}$
$T=29 \mathrm{~K}$
Rotation method data acquisition using ω and φ scans $\theta_{\text {min }}=3.2^{\circ}$
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
$T_{\text {min }}=0.720, T_{\text {max }}=0.823$
2735 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0433 P)^{2}+0.1195 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$w R\left(F^{2}\right)=0.098$
$S=1.02$
1914 reflections
122 parameters
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.28 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.31$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Primary atom site location: structure-invariant direct methods

Extinction coefficient: 0.043 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C11	$1.03470(12)$	$0.29507(9)$	$-0.22746(8)$	$0.0527(2)$
C12	$0.72031(12)$	$0.28513(10)$	$0.52153(8)$	$0.0594(3)$
C13	$0.68240(12)$	$0.81217(11)$	$-0.40685(9)$	$0.0608(3)$
O1	$0.4705(3)$	$0.7757(2)$	$0.0703(2)$	$0.0531(6)$
N1	$0.7131(3)$	$0.5825(3)$	$-0.0831(3)$	$0.0375(5)$
H1N	$0.772(4)$	$0.572(3)$	$-0.178(3)$	0.045^{*}
C1	$0.7880(4)$	$0.4371(3)$	$0.0367(3)$	$0.0322(6)$
C2	$0.9420(4)$	$0.2924(3)$	$-0.0178(3)$	$0.0335(6)$
C3	$1.0238(4)$	$0.1464(3)$	$0.0928(3)$	$0.0389(6)$
H3	1.1261	0.0506	0.0548	0.047^{*}
C4	$0.9541(4)$	$0.1425(3)$	$0.2590(3)$	$0.0395(6)$
H4	1.0076	0.0443	0.3343	0.047^{*}
C5	$0.8036(4)$	$0.2866(3)$	$0.3124(3)$	$0.0376(6)$
C6	$0.7181(4)$	$0.4339(3)$	$0.2045(3)$	$0.0370(6)$
H6	0.6158	0.5290	0.2436	0.044^{*}
C7	$0.5703(4)$	$0.7374(3)$	$-0.0617(3)$	$0.0343(6)$
C8	$0.5319(4)$	$0.8743(3)$	$-0.2174(3)$	$0.0436(7)$
H8A	0.5540	0.9800	-0.2190	0.052^{*}
H8B	0.3905	0.9042	-0.2109	0.052^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	$0.0643(5)$	$0.0476(4)$	$0.0356(4)$	$-0.0068(4)$	$-0.0059(3)$	$-0.0184(3)$

C12	$0.0708(5)$	$0.0553(5)$	$0.0319(4)$	$0.0043(4)$	$-0.0182(3)$	$-0.0098(3)$
C13	$0.0635(5)$	$0.0648(5)$	$0.0333(4)$	$-0.0041(4)$	$-0.0140(3)$	$-0.0049(3)$
O1	$0.0577(13)$	$0.0443(11)$	$0.0350(10)$	$0.0045(10)$	$-0.0100(10)$	$-0.0104(9)$
N1	$0.0410(13)$	$0.0352(12)$	$0.0268(11)$	$-0.0026(10)$	$-0.0082(10)$	$-0.0081(9)$
C1	$0.0309(13)$	$0.0310(13)$	$0.0336(13)$	$-0.0067(11)$	$-0.0102(10)$	$-0.0079(10)$
C2	$0.0337(13)$	$0.0358(14)$	$0.0321(13)$	$-0.0114(11)$	$-0.0053(11)$	$-0.0126(11)$
C3	$0.0341(14)$	$0.0336(14)$	$0.0468(16)$	$-0.0013(11)$	$-0.0138(12)$	$-0.0146(12)$
C4	$0.0402(15)$	$0.0333(14)$	$0.0431(15)$	$-0.0042(12)$	$-0.0196(12)$	$-0.0060(11)$
C5	$0.0394(15)$	$0.0384(14)$	$0.0327(13)$	$-0.0063(12)$	$-0.0129(11)$	$-0.0090(11)$
C6	$0.0356(14)$	$0.0358(14)$	$0.0338(13)$	$-0.0018(11)$	$-0.0105(11)$	$-0.0111(11)$
C7	$0.0334(14)$	$0.0313(13)$	$0.0352(14)$	$-0.0073(11)$	$-0.0095(11)$	$-0.0077(11)$
C8	$0.0405(15)$	$0.0421(15)$	$0.0369(15)$	$-0.0039(13)$	$-0.0109(12)$	$-0.0062(12)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 11-\mathrm{C} 2$	$1.737(2)$
$\mathrm{C} 2-\mathrm{C} 5$	$1.737(3)$
$\mathrm{C} 13-\mathrm{C} 8$	$1.771(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.212(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.348(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.410(3)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.82(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.389(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.395(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.382(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$128.8(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$117.0(19)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$114.0(19)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$119.1(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$122.9(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$117.9(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.9(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl} 1$	$119.2(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1$	$119.91(19)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.1(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.0
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.0
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.0(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.5
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.5
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$0.5(4)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-178.1(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.6(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.3(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 11$	$-178.90(19)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1$	$-0.2(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.2(4)$
$\mathrm{C} 11-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.3(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.6(4)$

$\mathrm{C} 3-\mathrm{C} 4$	$1.374(4)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.379(4)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.383(3)$
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{C} 8$	$1.518(3)$
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$122.2(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl} 2$	$119.14(19)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{Cl} 2$	$118.7(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$118.8(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.6
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	120.6
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$125.7(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$117.8(2)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$116.5(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{Cl} 3$	$115.98(18)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	108.3
$\mathrm{Cl} 3-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	108.3
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	108.3
$\mathrm{Cl} 3-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	108.3
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	107.4
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Cl} 2$	$-178.1(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.7(4)$
$\mathrm{Cl} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$178.5(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.1(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.7(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$	$-4.4(5)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$175.9(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Cl} 3$	$-0.5(3)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Cl} 3$	

sup-4

supplementary materials

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$
1.1 (4)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{Cl} 3$	$0.82(3)$	$2.43(3)$	$2.922(2)$	$120(2)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{Cl1}$	$0.82(3)$	$2.45(3)$	$2.933(2)$	$119(2)$

supplementary materials

Fig. 1

Fig. 2

